
Introduction

In the previous paper it was shown that the calibration

coefficient of a heat-flow DSC, k(T), is a function of

temperature that differs from the sensitivity of a ther-

mocouple, �(T), which the sensor is made from, by the

factor depending on heat transfer by heat conductivity

and radiation [1]:
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Here, A and B are the coefficients depending on

heat conductivity and radiation, respectively. These

cannot be derived exactly from a design of the calo-

rimeter and usually are evaluated after a calibration.

Calibration is compulsory for all heat flux DSCs.

It consists of two parts, experimental and mathemati-

cal. First, the sensitivity is measured at several points

(temperatures, Ti) yielding experimental values Ki.

Then, the values Ki are fitted to the hypothetical ‘true’

function k(Ti) as correct as possible.

The experimental part of a sensitivity calibration

is a routine procedure. Every company that manufac-

tures a DSC provides it with an operational instruc-

tion describing of how to proceed the calibration ex-

periments. In essence, all the instructions contain the

same recommendations. Regarding the mathematical

treating of the experimental results, there is no con-

ventional way to derive the fitting function k(T). In

the recommendation of the GEFTA working group

‘Calibration of Scanning Calorimeters’ this is not dis-

cussed, but in the ‘Example of caloric calibrations’

the authors used a square function, the fitting parab-

ola [2]. Each company-manufacturer uses its own

function. For example, the calibration of a Mettler

DSC is proceeded after a measurement of a single

substance melting, namely indium. On the contrary,

the calibration function for a Netzsch DSC can be

evaluated only after the measurements of at least five

various substances, not specified. It is not evident for

a user of a DSC which calibration procedure, one-

point or many-point, is better for his particular pur-

pose and why these procedures differ so drastically.

The objectives of this work were to analyze the

advantages and disadvantages of existing calibration

procedures and to develop the optimum scheme of the

sensitivity calibration.

Mathematical background

A smooth function without discontinuity and singu-

larity can be expanded to a series near point x0
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where fn(x–x0) is the n-th derivative. If the functional

relation is not known exactly, one can use a polyno-

mial of x with unknown coefficients ai instead
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p(x)=a0+a1x+a2x
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The polynomial fits function f(x) if its coefficients

are evaluated by solving the set of linear equations
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where Fi are the values of the function f(x) at points xi:

f(x1) = F1, f(x2)=F2, …, f(xm)=Fm, etc. The equations

are linear because they can be rewrite in the evident

linear form
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On the right-hand side, there is the linear equa-

tion with k+1 coefficients and k variables. All the

variables are different. They relate with one another

by the ratio yk+1/yk=x, but this is a particular case.

The equation set (4) has an indefinite number of

solutions if m<k+1 and has a unique solution if m=k+1

with polynomial p(x) passing exactly through the points

Fi. If the values Fi were measured in an experiment,

these contain an experimental error. Fitted exactly to the

experimental points, the polynomial will be twisting and

not quite close to the true function f(x) between the

points xi. An example of such a curve is shown in Fig. 1

where the 4th-order polynomial is fitted to five experi-

mental points. This makes evident that the unique solu-

tion is not a good solution to the problem of fitting un-

known function with a polynomial.

In treating experimental results, another case is

considered more suitable when the number of the val-

ues Fi is greater than the number of coefficients

ai (m>k+1). The equation set (4) is overdeterminated

and single exact solution does not exist. Approximate

result (unique again) of such a set can be received as

an analytical solution. The coefficients a0, a1, ..., etc.,

are expressed in terms of sums x i

j

i

� and x Fi

j

i

i

� . An

example of such a solution is also shown in Fig. 1: a

quadratic polynomial with three coefficients was

evaluated after the same five points. The curve passes

by the experimental points but fits the true function

better than the polynomial with five coefficients.

The mathematics of fitting is described in detail

in [3] (for students) and [4] (for scientists).

Many-point calibration (by Netzsch)

In the Netzsch–Proteus Software, an experimental

value of the calibration coefficient k*(T) at the particu-

lar temperature (Tm, melting point) is defined as a ratio

of the experimental peak area to the enthalpy of melt-

ing (Appendix). After the measurements of several ref-

erence materials with different melting points we re-

ceive a set of values k*(Ti). The fitting formula in the

Netzsch–Proteus Software contains six coefficients ai:
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All the six coefficients are evaluated only if the

number of experimental values Ki=k*(Ti) is greater

than seven. If the number of experimental values is

six, the number of the coefficients is five. For five ex-

perimental values, the number of the coefficients

evaluated is four. If the number of experimental val-

ues is four or less, the program fails to evaluate the

calibration polynomial. At a glance, the many-point

calibration procedure in the Netzsch–Proteus Soft-

ware agrees with case m>k+1 described in the previ-

ous paragraph. But this is not quite right. If formu-

lae (6) and (7) are combined in a single expression,

the resulting equation is not linear. Each coefficient

a2 to a5 in the sum (6) is multiplied by the exponent

containing, in turn, coefficients a0 and a1. Moreover,

the power of the exponent contains the ratio of coeffi-

cients a0 and a1. The set of such an equation cannot be

solved by the least squares procedure. No analytical

solution to the set exists as well. Usually, a numerical

solution is received after iteration procedure [4]. But

the iteration technique needs the number of experi-

mental points (m) to exceed the number of the coeffi-

cients (k+1) significantly (several times). If not, the

solution converges slowly and the function calculated
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Fig. 1 Fitting experimental points to a polynomial: 1 – dashed line

is a ‘true’ function; 2 – the polynomial with five

coefficients, the exact solution; 3 – the polynomial with

three coefficients, the method of least squares. Open circles

are the points measured with an experimental error



‘twists’ around the experimental points like the poly-

nomial with m=k+1 in Fig. 1.

Fortunately, this is not the case in the Netzsch–Pro-

teus Software. The coefficients in Eqs (6) and (7) are de-

fined separately. First, the values of a0 and a1 in (7) are cal-

culated. These are used for the scaling of temperature in

(6): a0 is the temperature of the experimental point with the

greatest value of Ki. The value of a1 depends on the great-

est difference between the temperature of the maximum

value of Ki and the temperature of the rest experimental

points. The exact equation for the calculation of a1 is not

known to us but this is chosen in such a way that variable z
in formula (6) ranges within the limits about –0.5 to 0.5.

Then the coefficients are calculated after conventional

method of least squares: four coefficients a2–a5 for seven

or greater experimental points, three coefficients for six

points, and two coefficients for five points.

The advantage of such a calibration is a high ac-

curacy attainable over the temperature range at will.

The greater is the number of experimental values of

the calibration coefficient in a temperature range of

interest, the greater is the number of coefficients in

the fitting polynomial, and the better is the fitting of

unknown ‘true’ calibration function k*(T).

The disadvantage is the labor-consuming sched-

ule. We have to measure at least five different refer-

ence substances even if we plan to measure heat ef-

fects in a short temperature range. The manufacturer

himself does not complete the calibration schedule

when provides a new equipment with a calibration

file evaluated after six experimental points from melt-

ing point of mercury (–38.8°C) to the phase transition

in CsCl (476°C) with five coefficients a0–a4. And

what is more, the manufacturer recommends to repeat

the calibration at least every 2 months.

One-point calibration (by Mettler)

The calibration program of DSC-30 (Mettler) needs a

single value ‘E’ calculated automatically after the

measurement of indium melting. The value must be

inserted into the file of DSC configuration. To im-

prove the ‘calibration coefficient’, one should use an

average value after several runs.

The manufacturer does not provide a user with

the information about mathematical operations in the

calibration program. One can suppose that a ‘typical’

calibration function is stored in a memory of the com-

puter processing experimental data. The following

analysis of the program operation will be based on the

analytical function (1) derived from the general de-

sign of a DSC.

There are three factors in the function k(T): ther-

mocouple (�), heat conductivity (A), and radiation

(B). They can be combined into two coefficients:

k T
T
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where ��(T) depends on the relationship between the

sensitivity of a thermocouple and heat conductivity,

and D depends on the relationship between heat con-

ductivity and radiation.

Technical (thermophysical) parameters of stock-

produced calorimeters are similar but not identical.

Calibration functions of individual calorimeters differ

from one another and from the ‘typical’ function k(T).

Several examples of the function are shown in Fig. 2a.

The variants differ from one another by 10% in ��(T)

and D values. The first step of the one-point calibration

by Mettler, namely the measurement of indium melt-

ing, yields a value of the calibration coefficient at

156.6°C which has to be compared with that of ‘typi-

cal’ calibration function. Then the calibration program

calculates a factor to multiply the whole calibration

curve of the particular calorimeter to fit it to the ‘typi-

cal’ calibration function. Such a correction decreases

the difference between the calibration functions of dif-
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Fig. 2 Calibration functions a – before and – b after one-point

calibration. Seven lines represent the variants of the

function for particular DSC with varying

thermophysical parameters, ��(T) and D. The variants

are listed in Table 1



ferent calorimeters (Fig. 2b). The variations in ��(T)

and D values affecting the difference in k(T) values are

listed in Table 1. The discrepancy between corrected

and ‘typical’ functions k(T) remains significant even

after the calibration by Mettler: up to 0.8% at –100°C

and 3.7% at +600°C.

Equation (8) allows us to recognize the reason of

the rest discrepancy and explain why it is asymmetric

with respect to temperature. At low temperatures

(1<<DT3) all the discrepancies in the calibration func-

tions are caused by the variation in ��(T), i.e., sensi-

tivity of a thermocouple and heat conductivity. These

factors can be corrected after the multiplication of the

whole function k(T) by a constant. At high tempera-

tures the term DT3 becomes greater and affects the

calibration coefficient. If the D value differs from that

in ‘typical’ k(T) function, the discrepancy cannot be

corrected by multiplying a constant. This is the reason

why the corrected curves differ from one another at

temperatures above 200°C in Fig. 2b.

The problem was discussed by Schubnell, a spe-

cialist of Mettler–Toledo [5]. He showed that an error

in the enthalpy of melting of several substances can be

as high as �3% in a temperature range between –100

and +160°C. Schubnell supposed that the reason of the

errors is the difference in heat transfer conditions

within the samples. But this is not quite right because

there is the trend in the errors: the far is the temperature

from 156.6°C, the greater is the discrepancy. A pecu-

liarity in the heat transfer conditions of a particular

substance produces an error only in the enthalpy of that

substance. But the trend derived from the measure-

ments of several substances is evidently caused by an

inherent imperfection of the calibration procedure, not

by a peculiarity of a particular substance. Probably, the

DSC model he used has the calibration function differ-

ing significantly from the ‘typical’ k(T) function,

namely in the conditions of the heat transfer by radia-

tion. In our calculations (Table 1) 10% difference in

the D value produces 0.8% discrepancy at –100°C.

One can assume that the difference in the D value of

the Schubnell’s DSC was about 40%. One more re-

mark. The difference in the calibration function devel-

ops much more at temperatures above 200°C. One can

expect that similar experiments with Schubnell’s DSC

at high temperatures can produce much higher discrep-

ancy, as high as 40% at 600°C.

To solve the problem of the discrepancy in the

enthalpies of melting of reference substances measured

with a calibrated (!) DSC, Schubnell suggests to

change the calibration equation. Instead of EinErel(T),

where Ein is a constant and Erel(T) describes the temper-

ature dependence of the caloric sensitivity as defined

by the manufacturer, he proposed Ein[Erel(T)+dE(T)],

where dE(T) is a second-order polynomial that may be

added by the user for calibration purpose. Thus, the im-

provement in the calibration by Mettler is in the in-

crease of the number of coefficients in a fitting polyno-

mial like the many-point calibration by Netzsch. It

means that the user has to measure several (at least

three or four) substances in addition to indium.

The advantage of the one-point calibration by

Mettler is the rapid operation. After only one measure-

ment of indium melting we have the calibration function

for the whole temperature range where DSC operates.

The disadvantage is the incorrectness in the cali-

bration function that cannot be corrected within the

bounds of the one-point procedure.

Optimal calibration procedure

Having the analytical Eq. (1) for the calibration coef-

ficient of a DSC, we can develop optimal procedure

for the sensitivity calibration. There are one function,

�(T), and two constants, A and B, in the equation

k T T
A BT

( ) ( )�
�

�
1

3

Strictly speaking, the problem of fitting �(T) is

out of the scope of routine DSC calibration. The man-

ufacturers of DSCs chose the material of a thermo-
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Table 1 Changes in calibration function caused by the changes in factors ��(T) and D of formula (8) before and after one-point
calibration by Mettler. Variant 4 is the ‘typical’ calibration function

No.
Factors Before calibration After calibration

×�*(T) ×D –100°C 156.6°C 600°C –100°C 600°C

1 1.1 1.0 +11.1 +11.1 +11.1 0.0 0.0

2 1.1 1.1 +11.0 +10.2 +6.2 +0.8 –3.7

3 1.0 0.9 0.1 0.8 4.3 –0.7 +3.4

4 1.0 1.0 0.0 0.0 0.0 0.0 0.0

5 1.0 1.1 –0.1 –0.8 –4.0 +0.7 –3.3

6 0.9 1.1 –9.0 –8.5 –5.6 –0.6 +3.1

7 0.9 1.0 –9.1 –9.1 –9.1 0.0 0.0



couple for the sensor after careful investigations and

tests of it. They know function �(T) in detail and it is

reasonable that a user of the DSC will be provided

with the whole information on �(T). For example, in

the Netzsch–Proteus Software this problem was

solved by excluding the function �(T) from the equa-

tion for the calibration coefficient

k T
k T

T A BT

* ( )
( )

( )
� �

��
1

3

Two constants in the formula can be derived

from the values of k*(T) at two different temperatures.

It is evident for the inverse equation

1 3

k T
A BT

* ( )
� �

which is identical to the equation of a straight line

y=a+bx.

The coefficients a and b can be derived from two

points, y1(x1) and y2(x2), that the line passes through.

To proceed the calculation, one need to solve a set of

two equations with two variables:
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Exact solution instead of the least squares

method can be used for Ki values with experimental

errors, for straight line does not deflect from true line

like a curve of a high-order polynomial. The calibra-

tion is described in detail in the Appendix.

Conclusions

Sensitivity calibration of a DSC by Netzsch differs

from that by Mettler in the number of experimental

points needed and in accuracy. Sensitivity of a ther-

mocouple �(T) is excluded from the calibration coef-

ficient in the Netzsch–Proteus Software. Many-point

calibration by Netzsch allows a user to fit unknown

function k*(T) to a polynomial of a scaled temperature

variable. The polynomial fits the calibration function

well but needs much labor to measure at least five ex-

perimental points several times. In the calibration by

Mettler, the whole calibration function is tabulated

and stored inside the computer program as ‘typical’

function. Single measurement of indium melting al-

lows the program to compare the calibration function

of a particular DSC with ‘typical’ one at 156.6°C.

Multiplying the ‘typical’ function by a constant, the

program makes it equal to the experimental one at the

point and uses it in the whole temperature range

where the DSC operates. Equal at 156.6°C, the cali-

bration functions diverge from one another when

moving off that point. The discrepancy can rise as

high as tens per cent. To solve the problem, Mettler

advises a user to introduce his own additional polyno-

mial into the calibration function. This transforms

one-point calibration into many-point one.

Based on the relationship between the calibra-

tion coefficient of a DSC and the sensitivity of a ther-

mocouple which the sensor is made from, two-point

calibration is developed. This is an optimal proce-

dure, for the measurements of only two reference sub-

stances melting at the ends of the temperature range

of interest allow one to evaluate the calibration func-

tion over the whole temperature range. The procedure

was tested for DSC-204 and found to fit heat capacity

of corundum better than 1% [1].

Appendix

Most calorimetric experiments in the Research and Educa-

tional Center of the Novosibirsk State University are carried

out above ambient temperature [6, 7]. DSC results are com-

bined with the low-temperature adiabatic calorimetry [8]. We

need the calibration of DSC-204 to be valid at a temperature

range of 100–450°C. The calorimeter was checked to obey the

relationship

1 3

k T
A BT

*( )
� �

with accuracy better than 1% [1].

1 Two points of the calibration are In (Tm=156.6°C,


Hm=28.6 J mol–1) and Zn (Tm=419.5°C, 
Hm=107.5 J mol–1).

The measurements of these metals melting yield the enthalpies

(
Hexp) 109.9 and 306.6 �V s mg–1, respectively.

2 The calibration coefficient is the ratio 
Hexp/
Hm:

k*(Tm)=3.8427 for In and k*(Tm)=2.8521 for Zn.

3 Melting points of indium and zinc are 429.75 and 692.65 K,

respectively.

4 Evaluation of coefficients A and B:

B
k k�

�

�

�
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1
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0 26024 0

3 3
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3
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.

. . 10 0 23188� .

5 Choosing 5 additional points of the calibration (at will):

T=200, 250, 300, 350 and 400°C=473.15, 523.15, 573.15,

623.15 and 673.15 K.

6 Evaluation of 1/k*(T) for the additional points:

1 3

k T
A BT

*( )
� �
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These are 0.26973, 0.28304, 0.29915, 0.31834 and

0.34087. The k*(T) values are 3.7075, 3.5331, 3.3428, 3.1413

and 2.9337.

Now we have the complete set of the basic data to start

the calibration program of the Netzsch–Proteus Software.

7 The program suggests us to fill in the table with the data.

Delete all default rows but indium and zinc, and insert five

new rows in between with dummy substances A, B, C, D

and E (Table 2).

8 Fill in the columns ‘Temp.’, ‘Enthalpy’ and ‘Peak Area’ and

press the button ‘Calculate’ of the right panel of the program

window. The rest columns ‘Sensit.Exp’, ‘Mathem. Weighting’

and ‘Sensit.Calc’. will be filled in automatically.

The difference between ‘experimental’ and ‘calculated’

sensitivity is within the error of round-off, i.e., the last digit in

a value can vary by �1.
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Table 2 Data for the evaluation of a calibration file on DSC sensitivity in the Netzsch–Proteus Software. Two-point procedure

Substance
Temperature/

°C
Enthalpy/

J g–1
Peak area/
�V s mg–1

Sensitivity exp./
�V mW–1

Mathematical
weighting

Sensitivity calc.
/�V mW–1

Indium 156.6 –28.6 –109.900 3.843 10.0 3.843

A 200.0 –1.0 –3.708 3.708 1.0 3.709

B 250.0 –1.0 –3.533 3.533 1.0 3.533

C 300.0 –1.0 –3.343 3.343 1.0 3.342

D 350.0 –1.0 –3.141 3.141 1.0 3.142

E 400.0 –1.0 –2.934 2.934 1.0 2.934

Zn 419.5 –107.5 –306.600 2.852 0.8 2.852


